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forded 1, 2, and, 5, in ~1:5:2 molar ratios, in ~87% combined 
yield. 

Reinvestigations of the work of Favorski and Nazarov4 by 
Eberson16 and by Bartlett et al.17 suggest that saturated ketyls 
must have extraordinary reactivity towards ethylene. 1-"Li+ 

in solution indeed reacts cleanly with ethylene at —30° or 
above, to give the dialkoxide of the 1,4-diol 8 (Scheme IV). In 
addition, 1 and the alcoholate of 2 are formed; the formation 
of the solvent-"adduct" 5 (alcoholate) is suppressed. Thus 
reaction of 1-"Li+ prepared as before in THF at —75°, with 
a large excess (~15 equiv) of ethylene at —22° for 24 h, fol­
lowed by hydrolysis and purification gave 1, 2, and 8 in ~3:2:3 
molar ratios, in ~68% combined yield. 

These experiments prepare the ground for the study of the 
reactions of transient ketyls in nonacidic media.7 
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Coexistence of Two Oppositely Polarized Zwitterionic 
Forms on the Lowest Excited Singlet Surface of 
Terminally Twisted Butadiene. Two-Funnel 
Photochemistry with Dual Stereochemistry 

Sir: 

The suggestion that certain photochemical rearrangements 
of hydrocarbons proceed through excited ionic intermediates 
was first made by Dauben.1 For the photocyclization of bu­
tadiene to bicyclobutane2 the orthogonal zwitterion I was 
proposed1 as a primary intermediate. It has recently been 
shown3 that the lowest excited zwitterionic states Z\ and Z2 
of diradical species can indeed be strongly polarized. This 
sudden polarization effect occurs (a) if the overlap between 
the two radical sites is sufficiently weak and (b) if a dissym­
metry exists between these two sites.4 The high polarizability 
of the two zwitterionic states of ethylene had been predicted 
theoretically by Wulfman and Kumei.5 

The sudden polarization effect was originally described in 
the following manner. For a given,geometry, the lowest Zi state 
is polarized in one direction, and the upper neighboring Z2 state 
is polarized in the opposite direction. In 90° twisted meth-
ylene-allyl with an arbitrary geometry (CiC2 = 1.50 A, C2C3 
= C3C4 = 1.40 A), a minimal basis set calculation6 gives the 
polarization shown in I for Z1, while Z2 adopts the polarization 
shown in II. Actually the favored polarization depends on the 
choice of basis set. 

For the same geometry the polarization of the Zi and Z2 states 
is reversed if an extended basis set6 or polarization functions 
are used. Physically, however, such calculations are not too 
meaningful since the excited molecule, in either of the polarized 
forms I and II, will seek to optimize its energy by adopting the 
geometry most appropriate to that form. If the optimized 
geometries corresponding to I and II are sufficiently different, 
the form whose energy has been optimized should always lie, 
at its optimum geometry, below the form with the opposite 
polarization. The two optimized geometries should lie on the 
same, lowest singlet excited surface. 

We have now carried out this dual geometry optimization 
for methylene-allyl in order to verify our assumption. The 
potential energy surface (Figure 1) for the lowest excited 
singlet state has indeed two minima7 corresponding respec­
tively to forms I and II in their optimized geometries. Form II 
lies lower in energy. The energies of the two wells differ by 9.2 
kcal/mol, with an intermediate barrier of 6.6 kcal/mol be­
tween higher well I and lower well II. The energetic ordering 
of the wells is independent of basis set.9 The figure also shows 
the optimized geometries of I and II and their charge distri­
bution. 

The photochemical implications of such a double-well po­
tential are noteworthy. The presence of two wells allows the 
possibility of two distinct photochemical pathways for which 
the wells act as funnels.10 If one well is much lower (10 kcal/ 
mol, say) than the other, one pathway will predominate. If the 
two wells are relatively close in energy, the two paths should 
be competitive. Consider for instance the introduction of a 
terminal methyl group on the butadiene molecule (there are 
now four possible intermediate orthogonal methylene-allyl 
zwitterionic forms). We arbitrarily place II, 4-methyl at 0 
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Figure 1. Potential surfaces for the lowest singlet states of 90° twisted 
methylene-allyl (minimal basis set). The coordinate Q is obtained by linear 
interpolation from the geometry of II to an intermediate geometry with 
planar subfragments, and from this intermediate geometry to the geometry 
of I. Bond lengths in this "half-way" skeleton are C i C2 = 1.375 A, C2C3 
= 1.475 A, C3C4 = 1.325 A (for this geometry II lies below I). Dotted lines 
show the avoided crossing between the configurations corresponding re­
spectively to I and II.7 Note that the diradical D is a maximum, or a 
near-maximum, along the coordinate for twisting around bond 12 (i.e., 
vertical excitation does not occur from D, but from the untwisted buta­
diene). 

kcal/mol. Substitution by methyl at C-I makes I, 1-methyl 
have a value of 0.1 kcal/mol. The energy difference between 
I and II has now decreased from 9.2 to 0.1 kcal/mol." The 
terminal methyl group stabilizes the methylene positive center 
more than the allylic positive center, a reasonable result in view 
of the larger (0.80 at 1 in I vs. 0.34 at 4 in II) positive charge 
at the former center. If we assume that the methylene-allyl 
can in principle cyclize at 24 in either form I or form II, our 
results would indicate that: (a) unsubstituted butadiene cy-
clizes via II (allyl cation; disrotatory),12 (b) 1-methylbutadiene 
cyclizes via both I and II (no stereospecificity), (c) 1,1-di-
methylbutadiene cyclizes via I (allyl anion; conrotatory).12 

However, since minimal basis sets are notoriously inadequate 
for the energies of anions or anionic fragments (already the few 
extended basis set points appear to decrease the relative sta­
bility of II), and since also we have not reoptimized the 
geometries of I and II in the presence of the substituents, only 
the qualitative trend indicated by our results should be con­
sidered seriously. 

This qualitative trend is a smooth passage from disrotatory 
ring closure to conrotatory ring closure with increasing un-
symmetrical terminal methyl (donor) substitution. It would 
be interesting to test this prediction by investigating whether 

the observed conrotatory preference13 in Dauben's pioneering 
experiment disappears in unsubstituted butadienes, using 
conveniently deuterium-labeled butadienes—or even better 
in a butadiene terminally substituted by an appropriate ac­
ceptor. Experimental confirmation would provide strong 
support for the zwitterionic nature of the primary intermediate 
and would reveal an extraordinary sensitivity of stereochem­
istry to substituents in photochemical reactions which proceed 
through zwitterionic intermediates.14 
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Conjugated Allenic 3-Oxo-5,l0-secosteroids. Irreversible 
Inhibitors of A 5-3-Ketosteroid Isomerase 

Sir: 

The enzymeA5-3-ketosteroid isomerase1 (EC 5.3.3.1) from 
Pseudomonas testosteroni converts C19 and C21 A5-3-keto-
steroids to the corresponding A4-3-ketosteroids. The proposed 
mechanism1,2 involves enolization with removal of the axial 
4A-hydrogen followed by ketonization of the A3'5-dienol with 
axiai reprotonation at C-6. The hydrogen transfer from C-4 
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